- diagonaux
-
Encyclopédie Universelle. 2012.
● diagonal, diagonale, diagonaux adjectif (bas latin diagnonalis) Qui relève d'une diagonale, en diagonale. ● diagonal, diagonale, diagonaux (expressions) adjectif (bas latin diagnonalis) Application diagonale, application injective définie sur un ensemble quelconque M, à valeurs dans l'ensemble M × M, et qui associe à tout élément x de M l'élément (x, x) de M × M. Matrice diagonale, matrice carrée dont tous les éléments extérieurs à la diagonale principale sont nuls. Raisonnement diagonal (parfois appelé raisonnement par [ou de] la diagonale), raisonnement fondamental de la théorie des ensembles, utilisé pour la première fois par Cantor pour établir que la puissance C du continu est strictement supérieure à la puissance ℵ0 de l'ensemble N des entiers naturels.
Encyclopédie Universelle. 2012.
Solide de Platon — En géométrie euclidienne, un solide de Platon est un polyèdre régulier et convexe. Entre les polygones réguliers et convexes de la géométrie plane, et les polyèdres réguliers convexes de l’espace à trois dimensions, il y a une analogie, mais… … Wikipédia en Français
Plan de Fano — Une représentation du plan de Fano En géométrie projective finie, le plan de Fano, nommé ainsi d après le mathématicien Gino Fano, est le plus petit plan projectif fini, c est à dire celui comportant le plus petit nombre de points et de droites,… … Wikipédia en Français
diagonal — diagonal, ale, aux [ djagɔnal, o ] adj. • XIIIe; bas lat. diagonalis; de diagonus, gr. diagônios « ligne tracée d un angle à l autre » ♦ Géom. Qui joint deux sommets (d une figure) qui n appartiennent pas au même côté, à la même face. Ligne… … Encyclopédie Universelle
Mécanique matricielle — La mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born, et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle … Wikipédia en Français
Facteur invariant — Théorème des facteurs invariants En mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants sont des obstructions à l inversibilité des matrices qui n apparaissent… … Wikipédia en Français
Matrice diagonalisable — Exemple de matrice diagonalisable sur le corps des complexes mais pas sur celui des réels, son polynôme caractéristique étant X2 + 1. En mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette p … Wikipédia en Français
Theoreme des facteurs invariants — Théorème des facteurs invariants En mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants sont des obstructions à l inversibilité des matrices qui n apparaissent… … Wikipédia en Français
Théorème des facteurs invariants — En mathématiques, le théorème des facteurs invariants porte sur les modules de type fini sur les anneaux principaux. Les facteurs invariants sont des obstructions à l inversibilité des matrices qui n apparaissent pas dans la théorie des espaces… … Wikipédia en Français
Analyse En Composantes Indépendantes — Pour les articles homonymes, voir ACI. L analyse en composantes indépendantes est une méthode d analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est… … Wikipédia en Français
Analyse de population de Mulliken — Charge de Mulliken Les charges de Mulliken proviennent de l analyse de population de Mulliken et fournissent des moyens d estimation des charges atomiques partielles à partir des calculs menés au moyen des méthodes de chimie numérique, et en… … Wikipédia en Français